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A turbulent equatorial jet 

By ROBERT R. LONG 
Department of Mechanics, The Johns Hopkins University, Baltimore 

(Received 31 January 1961 and in revised form 4 April 1961) 

A recent study of a laminar jet in a rotating spherical shell of fluid is extended 
to the case of a turbulent planetary jet at the equator of a rotaking, stratified 
atmosphere or ocean. General forms of the velocity, density and pressure func- 
tions of both the mean motion and the turbulence are derived by a dimensional 
analysis applied to the mean and perturbation equations. The horizontal and 
vertical dimensions are estimated, based on the three characteristic constants 
of the problem, which are the momentum transfer, the stability and a rotation 
parameter. The estimates are in good agreement with the dimensions of the 
Cromwell current, i.e. the equatorial undercurrent of the Pacific Ocean. 
To the first order of approximation, the mean axial velocity in the theory is 

independent of distance along the jet axis. The mean horizontal transverse 
velocity component is much smaller and decreases upstream. The mean vertical 
velocity is extremely small, also decreasing upstream. The two horizontal velo- 
city components of the turbulence are of the same order and, in the undercurrent, 
are about one-fourth the mean axial velocity. The vertical turbulent component 
is much smaller. Finally, it is shown that the eddy-viscosity concept is inappro- 
priate for this problem because at least one of the eddy coefficients would have 
to  be negative. 

1. Introduction 
In  a recent paper (Long 1960) the author investigated a laminar, two-dimen- 

sional jet in a rotating spherical shell of homogeneous, viscous fluid. The flow is 
predominantly zonal, or west-east, and a suggested physical mechanism is a 
balance of vorticity brought into the jet by the weak north-south motion and 
diffused by friction. The order of magnitude of the horizontal width of the 
theoretical jet is given by 7ilP8; N 1, where 8, is the width, U is a representative 
velocity, and /? is the north-south rate of change of the Coriolis parameter. This 
expression was used to estimate the width of the Cromwell current or equatorial 
undercurrent. This is a west-to-east current at the equator in the Pacific Ocean, 
located a hundred metres or so below the surface (Cromwell, Montgomery & 
Stroup 1954; Fofonoff & Montgomery 1955; Hidaka & Nagata 1958; Knauss & 
King 1958; see also the entire volume Deep Sea Research, 6,1960). If we use values 
ii = 1-5 x 102cmsec-1, /? = 2.6 x 10-13cm-lsec-1, appropriate to the Cromwell 
current, we obtain 8, N 2.6 x lo7 cm. This agrees well with the observed width, 
300 km, as reported by Knauss (1960). 

The laminar theory had two deficiences in relation to such geophysical jet 
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flows as the undercurrent and the equatorial atmospheric jet (Lettau 1956): 
(1) the theory assumed that all quantities were independent of height, whereas the 
natural jets have much smaller thicknesses in the vertical than in the horizontal; 
(2) the motion was laminar, whereas the natural jets are no doubt fully turbulent. 
It was argued that the results could be applied to the undercurrent by introducing 
the concept of eddy viscosity, but the validity of this concept is always doubtful. 

In this paper we investigate a fully turbulent jet in an infinite atmosphere or 
ocean. The axis of the jet is along the equator, and a general view is as pictured 
in figure 1. We may suppose that the flow is into a sink in the vicinity of x = 0, 
y = 0, z = 0. We confine attention, however, to the flow in the vicinity of 
( - X o ,  0,O) far upstream.? 

North u p  

Equator - - - -- 

South Down 

FIGURE 1. Schematic picture of mean motion in jet. The transverse velocity fields may 
have signs different from those suggested by this drawing. 

2. Basic equations 
We consider the fluid to be incompressible but inhomogeneous. At great distances 

vertically and horizontally from the jet axis, the gradient of density is linear in 
the vertical; i.e. kP a P + 2  P+o, ap+o, 

az g , ax aY 
where k is a constant, g is gravity, and po is a reference density. We also make the 
Boussinesq approximation (Boussinesq 1903) that density variations are negli- 
gible in their effects on the inertia of a parcel and in the equation of continuity, 
but of fundamental importance when they multiply gravity. Then, if we define 

kx 
a perturbation density p* by 

9 
P = Po--Po+P", 

and G ,  P by 

the equations of the problem can be written 

u, + uux + vuy + wuz -pyv = - P,, ( 2 )  

v, + uv, + vvy + wv, + pyu = - Pv, (3) 

w ~ + u w ~ + v w ~ + w w ~ - G  = -Pz, (4) 
G, + uG, + vG, + wG, + kw = 0, (5) 

Zl,+v,+w, = 0. (6) 
t We consider only westerly jets. Qualitative arguments, attributed to  C. C. Lin, 

indicate that westerly jets are stable, easterly jets unstable to large-wavelength per- 
turbations (Veronis 1960). 
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Equations ( 2 )  to (4) are the equations of motion, equation (5) expresses the in- 
compressibility assumption, and (6) is the equation of continuity. 

We have neglected molecular friction and diffusion. We know, of course, that 
these terms are important in so far as they affect the very small eddies, but it is 
well established that in fully developed turbulent flow at high Reynolds numbers, 
the effect on the mean motion as well as on the energy-containing eddies is 
negligible (Townsend 1956). 

The terms -Pyv and /3yu are the Coriolis accelerations, in which the Coriolis 
parameter 2s1 sin 8 (Q is the angular rotation speed of the sphere, 0 the latitude 
angle) has been approximated by 2s1y/a = By, where a is the radius of the sphere. 
This is a very good approximation if the north-south extent of the jet is suffi- 
ciently limited. Indeed, the error is of the same order as that involved in using 
equations in Cartesian instead of spherical co-ordinates, namely O(A-~), where 
A is the ratio of the east-west and north-south length scales (Long 1960). 

Finally we notice that in the two-dimensional theory (Long 1960), the solution 
described a jet motion that could exist at any latitude. In  this paper the jet 
must be located at the equator if the equations are to have the form of (2)-(6). 

We now take ensemble averages. Then, for example, we have 

u = U+u', (7) 

where U is the average velocity and U' = 0. If we substitute into (2)-(6), we get 
a set of averaged and unaveraged differential equations: 

A- + A-4 A-1 

Ex + vuu + WU, - pyv  = - r;, - (2qZ - - (m)z, 

GV, $- Ggy + wvz + pyu = - Fv - (m)z - (a):, - (DIwl)z, 

( 8 )  

(9) 

(10) 

(11) 

U,+V,+W, = 0, (12) 

A-P A-E A-2 A-2 A-' A-' 

€ i i \ - a  E ~ ~ - a   PA-^ € i ~ - a  , p ~ - i  eaA-i 

UW, + VLoy + WW, - G = - P, - ( u ' w ' ) ~  - ( v ' w ' ) ~  - (w 'w ' )~ ,  
- -~ - __ - 

A-1 A-1 

UG,+~Q,+@G~+Z~ = -(U'CTI'),-(V'~~~')~- (w-)~, 
- - 

A-* 

and 
A-t A-# A-t A-I A-4 I\-$ 

__ 
u; + Guj: + u'Ux - (u'u')x + U'U; + vu; + v'Gv + v'u; - (7qy, 

I\-* A-1 A-+ __ + W ' U ~  + WU; + w ' U ~  - ( u ' w ' ) ~  - P ~ v '  = - P;, (13) 
A-a A-# A-t  A-1 A-1 A-1 A-t 

__ 
v; + uv; + U'V, - (u'v')x + U'V; + vv; + V'Gy - (Zqy + v'v; 

A-t  A-1 A-1 A-t 

+ W'V:, + Wv:, + W'V, - (a), +pyu' = - PI, (14) 
€2 E a  €*A-a €*A-i . p ~ - i  pA-1 E i ~ - t  E ~ ~ - t  

w; + Uw; + u'Wz - (zqX + u'w; + vw; + v 'Wy - + v fw; 
61A-1 €PA-' €lA-f 

~ + w'Wz + WW; - (w'w'), + W'W; - G' = - Pl, (15) 
30-2 
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u;+v;+w; = 0. 

The symbols A-l, e2R-l, etc., over the terms in these equations express the order 
of magnitude of the terms in a way which will be explained later. 

If we now integrate equation (8) over a section of the jet, and assume that the 
velocities go to zero sufficiently fast at  great distances from the jet axid, we get 
that m A-1 

J =Im 1 (P+E2+u,u l -ghJ%)dydx  (18) 
- w  -m 

is constant, where we have used integration by parts and the equation of con- 
tinuity to transform the Coriolis term. The constant J is fundamental to the 
problem. It is called the momentum transfer. If we specified the conditions at 
the sink precisely and all other conditions of the problem, and found the exact 
solution corresponding to zero motion at IyI +GO, 1x1 +GO, the integral (18) 
would be constant (independent of x), and J would be automatically determined. 
We confine attention, however, to the flow at large distances from the sink, and 
the solution we seek is not valid in the region (near the origin) where conditions 
are imposed that involve the precise description of the sink, say the flux Q and 
a linear dimension a. In  adopting (18) as an alternative condition we must recog- 
nize the possibility that this may not be an adequate substitute for the two 
conditions involving a, Q ,  and that an indeterminacy may result. (Additional 
remarks about this point are contained below.) 

3. General form of solution 
We first make boundary-layer type estimates of the size of the terms in the 

mean equations. For example, it is plausible that the Coriolis and pressure terms 
alone dominate in (9), and that the vertical pressure variation is hydrostatic 
in (10). A first approximation for the unknowns in the equations of mean motion 
can then be obtained by using a generalized dimensional analysis, i.e. a search 
for invariance under a general affine transformation (Birkhoff 1950). We may 
then use the equations defining the Reynolds stresses to estimate the magnitude 
of such turbulent quantities as u'vf. A combination of these estimates of mean 
and turbulent quantities leads us to the general form of a first approximation 
to the solution and to a set of simplified differential equations that determine 
the first approximation. This in turn suggests a consistent scheme of successive 
approximations to the exact solution of the fully turbulent jet problem in the 
form of power series in certain small variables and parameters. We do not, to 
be sure, show that other expansions are not possible. 

We first shift the origin of our co-ordinate system from the orifice to an origin 
at a great distance toward the west, X,. Then x is the variable distance along 
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the x-axis from the section in question. We introduce a typical velocity and 
length 

c = PtEJS, (19) 

L = p-$Jfkh,  (20) 

= x / L ,  11 = y/L, 5 = 4L€, 7 = tc/L, (21) 

where E = Jf@k*. (22) 

A = (X,-x)/L.  (23 ) 

and non-dimensional independent variables 

We also need a non-dimensional function? of x :  

We assume that A is very large. It is of the order of the ratio of the axial scale of 
the mean motion to the width of the jet if we assume q N 1. We see that if the 
quantities 5 and 7 in (21) are both of the order of one, E is the ratio of the vertical 
and north-south length scales. We assume that e is very small. (It is of the order 
of lov3 in the case of the equatorial undercurrent.) 

We now search for solutions for the mean and turbulent quantities in the forms1 

UIC = U, + &*U2 + . . . + E2U2, + . . . , 
VA~C = V, + A-*& + . . . + e2G1 + . . . , 

GA/ec = q+A-*W,+ .,. +e2K1+ ..., 
B/C2 = Pl + A-*P2 + . . . + 

BeLIc2 = Gl + A-BG, + . . . + @GZ1 + . . ., 
uZ?A/C~ = F, + A-*F2 + . . . + e2Fz1 + . . ., 
U T A I C ~  = Nl + A-*N2 + . . . + E ~ N ~ ~  + . . . , 

uIWIAIC'E = Hl + A-*H2 + . . . + e2HZ1 + . . . , 
01211A/c2 = K,  +A-*K2 + . . . + e2K2, + . . . , 

vIWIA/C2e = L, + A-*L2 + . . . + e2Lz, + . . . , 
WIW)R/c2e2 = MI + A-*M2 + . . . + E ~ M ~ ~  + . . . , 
u)GIELA/c~ = A ,  + A-*A2 + . . . + E ~ A , ,  + . . . , 
V'G'eLA/c3 = B, + A-*B, + . . . + e2B2, + . . . , 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

+ . . . , 

t Although we define A with the idea in mind that X ,  represents the distance to the 
orifice from the section at which we perform our analysis, in fact nothing in the analysis 
will be changed if we regard X ,  simply as a sufficiently large positive quantity with the 
dimensions of length. Some consequences of this are discussed below. 

The first approximations to the solution represent self-preserving flow, but in the 
development of this paper we show that this type of flow is possible at great distances from 
the orifice by considering all equations and conditions of the problem, not simply the 
equations of mean motion. Since the analysis may be applied to jets and wakes in homo- 
geneous, non-rotating fluid, the approach of this paper removes the necessity for the 
customary assumption. of self-preserving flow. The point is discussed by Townsend (1956). 
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__ 
w'G'LAlc3 = C, + A-W, + . . . + E."C,, + . . . , (37) 

u'A*/c = u1 + A-*u, + . . . + c~u, ,  + . . . , 
v ' A ~ ~ c  = vl+A-bz+ ... +C~V,,+ ..., 

w'A*/cc = W ,  + A-~w, + . . . + c%,, + . . ., 
P'A*lc2 = p1 + A-*p2 + . . . + e2p2, + . . . , 

G'ELA*/C~ = g, + R-ig, + . . . + Gg2, + . . . , 

(38) 

(39) 

(40) 

(41) 

(42) 

where the functions denoted by capital letters, U,, V,, etc., are functions only 
of 7, Q and those denoted by small letters, u,, v,, etc., are functions of 5, 7, c, r. 

If these expressions are substituted into equations (8)-( 18), we find 'that the 
sets of quantities U,, K-p,, 9,; U,, &-p2, g,; etc., satisfy sets of equations in 
independent variables t , ~ ,  C, T, from which all the constants of the problem are 
missing and which do not involve A or E .  If we assume, therefore, that U,, K-p,, g, 
as well as 5, 7, 6, T are all of order one, we may then estimate the magnitude of 
all terms in equations (8)-( 18). A quantity such as A-l, etc., written over 
a term is the ratio of that term to the dominant terms of the equation. 

The first set of equations is 

and 

+ 
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These are 10 differential equations in 14 unknowns U,, V,, W,, P,, G,, u,, v,, wl, 
p,, g,, N,, H,, B,, C,. We can make the system determinate, however, by adding 
the four equations 

A 

N, = A+ lim m RS,u,v,dt, (54) 

Since N,, H,, B,, C, do not vary with c, we substitute for the ensemble average 
a space average along the x-axis. The equations (43)-(47), (49)-(53) and (54)-(57) 
are now a complete set of equations. Notice that if we multiply (52) by g, and 
average, we get 

This may be substituted for either (56) or (57). 
The mathematical problem of the first approximation is not completely stated 

by the system of equations (43)-(57). Indeed, we see that if U,, 6, W,, P,, G,, 
u,, v,, wl, p,, g,, N,, H,, B,, C, is a solution of the system, then there is an infinity 
of solutions V,, a2K, a2W,, P,, G,, au,, av,, awl, up1, agl, a2Nl, a2Hl, a2B,, a2Cl, 
where a is any constant. Notice that as a is varied the solutions change in just 
the same way as a given solution changes when X $  is varied. (The difference 
between X ,  - 2 and X, in A is negligible for the purposes of the first approxi- 
mation.) A similar indeterminacy arises in the non-rotating, homogeneous, 
turbulent jet. If the eddy-viscosity concept is used, it appears as an indeter- 
minacy in the eddy Reynolds number (Townsend 1956). 

One reason for the indeterminacy is that we have said nothing yet about our 
origin of time or about the turbulent velocity, pressure and density fields that 
exist at  that instant. Something must be specified about those turbulent fields, 
but since we have assumed no variation with time of the mean quantities the 
initial fields are not completely arbitrary. For example, if we assume solutions 
for the turbulent quantities in the form 

u1 = ull cos (a t  + b ~ )  + u12 sin (a6 + b7), 

vl = vll sin (a t  + b7) + v12 cos (at  + b7), 

w1 = wI1 sin (a t  + b7) + w12 cos (a t  + bT), 

p1 = r)11cos(a~+b~)+r)12sin(at+b~), 

g, = gll cos (ag + b7) + g12 sin (aE + b7), 
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where ull, v12, etc., are functions of 7, c, and a, b are constants, we find from 
(54) to (57) 

4 = ibllW12 + +~12W11, 
B, = +v11g12+ 4v1zg11, 

C l  = ikJ11912 + iw12911. 
On substitution into (43)-(53), the sine and cosine terms cancel out and we get 
15 differential equations in 15 unknowns U,, V,, . . ., ull, vll, . . ., u12, v12, . . .. In  
this way we can arrive, in principle, at  a solution of the first-approximation 
problem, but theinitial conditions that areimplied by this solution arevery special. 
It is possible, of course, to assume solutions for the turbulent quantities that will 
satisfy more general initial conditions, but this increases the complexity of the 
equations that must be solved. 

4. General properties of the jet 
If we suppose that all the non-dimensional quantities that we have introduced 

(except A, E) are of the order of 1, and if we confine attention to the first approxi- 
mation in (24)-(42), we can state a number of properties of the jet: 

(1) Combining U, N 1 and 7 N 1, we find that 8, N U"p-4, where 8, is the width 
of the jet. The width is small if the speed is low and if the rotation is high. In  
order of magnitude this is the same as the width of the laminar jet (Long 1960), 
although the laminar jet widens gradually with distance from the sink, whereas 
the width of the turbulent jet is uniform. 

(2) Combining 6 N 1, 7 N 1, we find that 8, N Uk-4, where 8, is the vertical 
thickness of the jet. Hence the vertical extent of the jet is small if the speed is 
low and the stability large. The vertical thickness is also independent of distance 
from the sink. Notice that the motion so adjusts itself that the non-dimensional 
numbers representing the rotation effect and the stability are of the order of one. 

(3) The axial mean velocity is constant along the length of the jet. 
(4) The transverse mean velocities both decrease upstream as l/Xo. In  magni- 

(5) The mean-density field is independent of distance along the axis. 
(6) The two horizontal turbulent velocity components are of the same order 

and smaller than the axial mean velocity. The vertical and horizontal transverse 
turbulent velocities are larger than the corresponding mean quantities. The 
vertical turbulent velocity is much smaller than the horizontal components. 

(7) All turbulent quantities decrease rather gradually upstream as X;&. 
(8) The horizontal scale of the turbulence is of the order of the horizontal 

width of the jet; the vertical scale of the turbulence is of the order of the thickness 
of the jet. 

An important result may be obtained concerning the eddy-viscosity concept 
applied to this problem. For example, if we assume the turbulent transports are 
proportional to the mean density gradients 

tude, V < U and W < V .  
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where K,, K ,  are horizontal and vertical components of eddy diffusivity, the 
form of (46) is preserved only if 

where S,, S, are non-dimensional functions of 7, 5. The coefficients of diffusion 
therefore decrease upstream as we would expect, and in general vary with the 
constants of the problem in a plausible way. But using (58) we have 

This can only be true, however, if the diffusion coefficients are allowed to be 
negative. We see clearly that an analogy with molecular diffusion and friction 
is not useful in this problem of turbulence. 

5. Circumferential equatorial jets 
In the next section we apply the theory of the turbulent jet to the equatorial 

undercurrent. Before doing this we may mention here that westerly currents 
at  the equator seem to be a very common feature of the atmospheres of the 
planets and the sun. In  astrophysics it is known as the equatorial acceleration 
(Wasiutyriski 1946; Cowling 1953; Hess 1951). In  Jupiter, for example, this 
acceleration occurs in a band between - 7" and + 7" latitude and amounts t o  a 
relative angular velocity of about 1 %  of the angular velocity of the planet 
(w /Q N 0.01). In  the atmosphere of the sun the acceleration is very strong, but 
very variable within a sunspot cycle, w / Q  varying from 0.3 to 0-7 or so. The band 
containing high-speed fluid is between - 55" and + 55" when wlQ is a minimum; 
when w / Q  is a maximum, the width of the band is very indefinite, but certainly 
even broader than this. 

The same phenomenon occurs in our own atmosphere, although it is not yet 
known whether it extends round the entire globe (Lettau 1956). This jet is called 
the Berson westerlies by Lettau in honour of Berson who first reported the 
phenomenon (1910). Observations indicate that it is located in the stratosphere 
at around 20 km. It is about 5 km thick and 1500 km in north-south extent. The 
speeds are of the order of lo3 cm see-I. 

The theory of this paper can be modified to apply to this phenomenon, We 
need only recognize that there can be no variation of the mean quantities with 
longitude, so that A is simply an undetermined large number. The order of the 
width of the jet is the same, 8, N id/-*, or St? - (w/2Q)&.  This seems to describe 
in a rough way the variation in the size of the jet in the astrophysical examples. 

If we apply the theory to the Berson westerlies, we get S, N 6 x lo7 cm. This is 
considerably less than the observed width, but our knowledge of this current is 
still quite limited. If we use ;il = lo3, k = 4 x we find S, N 5 x 104cm which 
is very much too small. However, we should note that the westerly jet is im- 



474 Robert R. Long 

bedded in a belt of easterlies with a general drift of perhaps 3 x 103cmsec-l. 
It is more reasonable then to use for U the relative velocity of 4 x lo3. This yields 
(r, N 2 x 105cm and cYY - 1.2 x 10*cm. 

6. Application to the equatorial undercurrent 
In  any attempt to apply the above theory to the equatorial undercurrent we 

must recognize that an ocean surface exists in one case and not in the other. 
Our theory of a jet in an infinite fluid can be adapted to this case, however, as 
follows: if we guess that the mean theoretical axial velocity profile in a vertical 
section resembles that in figure 2 (counter currents are typical phenomena in 
rotating and stratified fluids), we could put in a free surface 8 at the indicated 
position without changing the situation substantially, provided the surface 
stress in the natural phenomenon is substituted for the stress exerted by the 
fluid above S in the theoretical situation. If we adopt this viewpoint, this force, 
supplied by the wind stress in the case of the ocean, may be related to the depth 
of the jet axis below the surface. 

2 

I I Free,surface S 

FIGURE 2. Schematic picture of vertical velocity profile of undercurrent. 

In  applying our theory to the Cromwell current we take as observed 
values (Knauss 1960) a mean velocity of 1.5 x 102 cm sec-l, width 3 x lo7 cm, 
vertical thickness 2 x 104 cm, longitudinal length 5 x 108 cm or more, p = 2.3 x 
10-13cm-1sec-1. If we use the given values of T i  and /3, we may compute 
8, and 8,. We get 8, N 2.6 x 107cm, 8, N 104 cm, where we have estimated the 
stability parameter? k = ( g / p )  dpldz N 4 x 10-4sec-2. Since the estimates are 
only supposed to be order of magnitude estimates, these results are remarkably 
close to the mark. The value of A is about 20 in this case, so that all turbulent 
quantities are 

Although we do not solve for the mean velocity and temperature fields in the 
jet we may make certain inferences about them. In  figure 3 we picture the flow 

t This estimate was supplied to me by Professor R. B. Montgomery. 

to + of the corresponding mean quantities. 
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in a vertical north-south cross-section. Since the motion is westerly in the jet 
the y- and z-equations of mean motion (or the thermal wind equation) require 
a temperature field in which the isotherms are roughly as drawn. This suggests 
the vertical and horizontal transverse velocities shown, and this is consistent 
with the equation of continuity (47). It is important to remark that this is 
precisely the observed form of the constant density surfaces in the vicinity of 
the Cromwell current as we see in figure 4. This transverse velocity field is also 
consistent with the Ekman wind-drift theory, which requires that the surface 
water move north and south away from the equator in this region. 

FIGURE 3. Mean temperature distribution in jet. 

The author wishes to thank Professor R. B. Montgomery and M i  R. S. Arthur 
for a number of stimulating conversations about the undercurrent. This research 
wa0 sponsored by the Office of Naval Research and the U.S. Weather Bureau. 

Appendix 
Jets are very common in stratified and rotating fluid systems. For example if 

a rotating fluid is heated, very pronounced, irregular jets occur at  the free surface 
(Fultz et al. 1959). They resemble the famous Jet  Stream of the atmosphere and 
other currents like the Gulf Stream in the oceans. In  these phenomena the 
rotation itself, rather than the variation of the rotation, is probably the more 
important effect. An analysis, essentially the same as that above, can be applied 
to such a jet, using the same equations as (2)-(6) except that f = 2R replaces /3y. 
The solutions all have the same form as (24)-(42). However, now we have 
c = Jiff"k*, L = Jif-gk*, E = fk-4, and in the differential equations of the f i s t  
approximation 7 is missing in the terms corresponding to the Coriolis forces. 
We may compare these results with observations of the Jet  Stream and Gulf 
Stream (Newton 1959; Stommel 1960). For example, Newton's data give for 
the ratio of depth to width 0.005 for both. We get precisely 0.005 for E if we use 
the reasonable valuesf = k = 4 x 10-4. On the other hand, the theoretical 
estimates of the dimensions of the Jet Stream and Gulf Stream are too low by 
a factor of 2 or so. 
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FIGURE 4. Specific-volume anomalies in centilitres per ton on vertical section in Pacific 
Ocean a t  150" W. in July-August 1952. Observations from Hugh M .  Smith of Pacific 
Ocean Fishery Investigations, U.S. Fish and Wildlife Service. Drawing from unpublished 
manuscript by R. B. Montgomery and E. D. Stroup. 
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